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Abstract

In this study, we introduce the new concept of θt-contractive and (ϕ, θt)-contractive mappings in
ordered metric spaces having t-property. We obtain these theorems without requiring that the
metric spaces are complete. Finally, we present some examples to illustrate the new theorems
are applicable.
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1 Introduction

Existence of fixed points for contraction mappings in complete metric spaces was introduced by
Banach [1], also known as the Banach contraction principle, which claims that if (Y, d) is complete
metric spaces and S : Y → Y is a contractive mapping d(Sz, Sw) ≤ Ld(z, w) for all z, w ∈ Y and
L ∈ [0, 1). Several authors introduced various extensions and generalizations of the Banach con-
traction principle. For example in 2014 Jleli and Samet [2] introduced the following θ-contractive.
Defined by Θ is set of functions θ : (0,∞)→ (1,∞) satisfying the following conditions:

(Θ1) θ is non-decreasing;

(Θ2) for each sequence {kn} ⊂ (0,∞), limn→∞ θ(kn) = 1 if and only if limn→∞ kn = 0+;

(Θ3) there exist c ∈ (0, 1) and d ∈ (0,∞] such that limk→0+
θ(k)−1
kc = d .

According to [3], define by ϕ the set of functions ϕ : [1,∞) → [1,∞) satisfying the following
conditions:

(ϕ1) ϕ : [1,∞)→ [1,∞) is non-decreasing;

(ϕ2) for each k > 1, limn→∞ ϕn(k) = 1;

(ϕ3) ϕ is continuous [1,∞).

Lemma 1.1. [3] If ϕ ∈ ϕ, then ϕ(1) = 1, and for each k > 1, ϕ(k) < k.

Ran and Reurings [4] introduced a fixed point result on a partially ordered metric space. Thereafter,
some results, various extensions and generalizations on partially ordered can be found in [5, 6, 7,
8, 9].

Rashid, et al. [10], the completeness of the metric space is removed in the given results. To
overcome this lack, they introduced that space has the t-property.
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Definition 1.2. [10] Let (Y,�) be an ordered set and z, w ∈ Y . z is said to be strict upper bound
of w, if w � z and z 6= w. We donete it by w ≺ z.

Definition 1.3. [10] Let (Y,�, d) be an ordered metric space. Y has the t-property if every strictly
increasing Cauchy sequence {zn} in Y has a strict upper bound in Y, i.e., there exists e ∈ Y such
that zn ≺ e.

In this article, following by Rashid, et al. [10], Zheng et al.[3], Jleli and Samet [2], we introduce
some fixed point theorems for new contractive mappings in partially ordered metric spaces having
t property. We obtain these theorems without requiring that the metric spaces are complete.

2 Main results

In this section, we present our main results. First, we give the following θt-contractive mapping.

Definition 2.1. Let (Y,�, d) be an ordered metric space and S : Y → Y be a mapping and θ ∈ Θ.
Then we say that S is θt-contractive mapping if there exists δ ∈ (0, 1) such that for all z, w ∈ Y
with z 6= Sz, w 6= Sw and z ≺ w, we have

θ(d(w, S(w))) ≤ [θ(d(z, S(z)))]δ. (2.1)

Theorem 2.2. Let (Y,�, d) be an ordered metric space having t property and S : Y → Y be
a θt-contractive mapping. Assume that S is non-decreasing and there exists z0 ∈ Y such that
z0 � S(z0). Then S has at least one fixed point.

Proof. We have z0 ∈ Y such that z0 � S(z0). If z0 = S(z0) then the proof is completed. Now,
choose z1 = S(z0) such that z0 ≺ z1. Since S is monotonicity, we have S(z0) � S(z1), that is,
z1 � S(z1). If z1 = S(z1) then the proof is complete. Similarly, choose z2 = S(z1) such that
z1 ≺ z2. Since S is monotonicity, we have S(z1) � S(z2), that is, z1 � S(z1). Continuous this
condition, we have a strictly increasing sequence {zn} in Y such that zn+1 = S(zn). From z0 ≺ z1

and using (2.1), we obtain

θ(d(z1, S(z1))) ≤ [θ(d(z0, S(z0)))]δ. (2.2)

Similarly, from z1 ≺ z2 and using (2.1), we obtain

θ(d(z2, S(z2))) ≤ [θ(d(z1, S(z1)))]δ ≤ [θ(d(z0, S(z0)))]δ
2

. (2.3)

From the above inequalities, we have

θ(d(zn, S(zn))) ≤[θ(d(zn−1, S(zn−1))]δ

≤[θ(d(zn−2, S(zn−2))]δ
2

...

≤[θ(d(z0, S(z0))]δ
n

. (2.4)

On taking limit as n→∞, we get

lim
n→∞

θ(d(zn, S(zn))) = 1, (2.5)
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which implies from (Θ2) that
lim
n→∞

d(zn, S(zn) = 0+.

From condition (Θ3), there exists p ∈ (0, 1) and Q ∈ (0,∞] such that

lim
n→∞

θ(d(zn, S(zn))− 1

(d(zn, S(zn)))p
= Q. (2.6)

Suppose that Q <∞. Then, let R = Q
2 > 0. We get, there exists n0 ∈ N such that∣∣∣∣θ(d(zn, S(zn)))− 1

(d(zn, S(zn)))p
−Q

∣∣∣∣ ≤ R, for all n ≥ n0.

Which implies that

θ(d(zn, S(zn)))− 1

(d(zn, S(zn)))p
≥ Q−R = R, for all n ≥ n0.

Subsequently, for all n ≥ n0, we obtain

n(d(zn, S(zn)))p ≤ Tn[θ(d(zn, S(zn)))− 1],

where T = 1
R . Suppose that Q = ∞. Let R > 0 be an arbitrary positive number. We get, there

exists n0 ∈ N such that

θ(d(zn, S(zn)))− 1

(d(zn, S(zn)))p
≥ R,

for all n ≥ n0. Which implies that for all n ≥ n0,

n(d(zn, S(zn)))p ≤ Tn[θ(d(zn, S(zn)))− 1],

where H = 1
R . Thus, in two cases, there exists T > 0 and n0 ∈ N such that, for all n ≥ n0,

n(d(zn, S(zn)))p ≤ Tn[θ(d(zn, S(zn)))− 1].

Using (2.4), we have

n(d(zn, S(zn)))p ≤ Tn([θ(d(z0, S(z0)))]δ
n

− 1), (2.7)

for all n ≥ n0. Letting n→∞ in (2.7), we get

lim
n→∞

n(d(zn, S(zn)))p = 0.

Therefore, there exists n1 ∈ N such that

d(zn, S(zn)) ≤ 1

n
1
p

, for all n ≥ n1. (2.8)



222 S. S. Yeşilkaya

For all n,m ∈ N with m > n ≥ n1. We have

d(zn, zm) ≤d(zn, zn+1) + d(zn+1, zn+2) + · · ·+ d(zm−1, zm)

=d(zn, S(zn)) + d(zn+1, S(zn+1)) + · · ·+ d(zm−1, S(zm−1))

=

m−1∑
i=n

1

i
1
p

≤
∞∑
i=n

1

i
1
p

→ 0.

This yields that {zn} is a strictly increasing Cauchy sequence in Y which has t-property. Hence,
there exists e ∈ Y such that zn ≺ e. If S(e) = e, then, the proof is complete. Suppose on contrary
that

θ(d(e, S(e))) ≤[θ(d(zn, S(zn)))]δ

≤[θ(d(zn−1, S(zn−1)))]δ
2

...

≤[θ(d(z0, S(z0)))]δ
n+1

.

On taking limit as n → ∞, we obtain d(e, S(e)) = 0. Therefore, we get e = S(e). Moreover let f
be any strict upper bound of e ∈ Y , then e ≺ f. Using (2.1), we obtain

θ(d(f, S(f))) ≤[θ(d(e, S(e)))]δ

≤θ(d(e, S(e))).

Thus we obtain f = S(f), that is, f is also a fixed point of S and so the proof is complete.
q.e.d.

Definition 2.3. Let (Y,�, d) be an ordered metric space and S : Y → Y be a mapping and θ ∈ Θ.
Then we say that S is (ϕ, θt)-contractive mapping if there exists ϕ ∈ ϕ such that for all z, w ∈ Y
with z 6= Sz, w 6= Sw and z ≺ w, we have

θ(d(w, S(w))) ≤ ϕ[θ(d(z, S(z)))]. (2.9)

Theorem 2.4. Let (Y,�, d) be an ordered metric space having t property and S : Y → Y be a
(ϕ, θt)-contractive mapping. Assume that S is non-decreasing and there exists z0 ∈ Y such that
z0 � S(z0). Then S has at least one fixed point.

Proof. We have z0 ∈ Y such that z0 � S(z0). If z0 = S(z0) then, the proof is complete. Now, choose
z1 = S(z0) such that z0 ≺ z1. Since S is monotonicity, we have S(z0) � S(z1), that is z1 � S(z1).
If z1 = S(z1) then, the proof is complete. Similarly, choose z2 = S(z1) such that z1 ≺ z2. Since S
is monotonicity, we have S(z1) � S(z2), that is, z1 � S(z1). Continuous this condition, we have a
strictly increasing sequence {zn} in Y such that zn+1 = S(zn). From z0 ≺ z1 and using (2.9), we
obtain

θ(d(z1, S(z1))) ≤ ϕ[θ(d(z0, S(z0)))]. (2.10)
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Similarly, from z1 ≺ z2 and using (2.9), we obtain

θ(d(z2, S(z2))) ≤ ϕ[θ(d(z1, S(z1)))]. (2.11)

From the above inequalities, we have

θ(d(zn, S(zn))) ≤ϕ[θ(d(zn−1, S(zn−1)))]

≤ϕ2[θ(d(zn−2, S(zn−2)))]

...

≤ϕn[θ(d(z0, S(z0)))]. (2.12)

On taking limit as n→∞, we get

lim
n→∞

θ(d(zn, S(zn))) = 1, (2.13)

which implies from (Θ2) that
lim
n→∞

d(zn, S(zn) = 0+.

From condition (Θ3), there exists p ∈ (0, 1) and Q ∈ (0,∞] such that

lim
n→∞

θ(d(zn, S(zn))− 1

(d(zn, S(zn)))p
= Q. (2.14)

Suppose that Q <∞. Then, let R = Q
2 > 0. We get, there exists n0 ∈ N such that∣∣∣∣θ(d(zn, S(zn)))− 1

(d(zn, S(zn)))p
−Q

∣∣∣∣ ≤ R, for all n ≥ n0.

Which implies that

θ(d(zn, S(zn)))− 1

(d(zn, S(zn)))p
≥ Q−R = R, for all n ≥ n0.

Subsequently, for all n ≥ n0, we obtain

n(d(zn, S(zn)))p ≤ Tn[θ(d(zn, S(zn)))− 1],

where T = 1
R . Suppose that Q = ∞. Let R > 0 be an arbitrary positive number. We get, there

exists n0 ∈ N such that

θ(d(zn, S(zn)))− 1

(d(zn, S(zn)))p
≥ R,

for all n ≥ n0. Which implies that for all n ≥ n0,

n(d(zn, S(zn)))p ≤ Tn[θ(d(zn, S(zn)))− 1],
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where T = 1
R . Thus, in two cases, there exists T > 0 and n0 ∈ N such that, for all n ≥ n0,

n(d(zn, S(zn)))p ≤ Tn[θ(d(zn, S(zn)))− 1].

Using (2.12), we have

n(d(zn, S(zn)))p ≤ Tn(ϕn[θ(d(z0, S(z0)))]− 1), (2.15)

for all n ≥ n0. Letting n→∞ in (2.15), we get

lim
n→∞

n(d(zn, S(zn)))p = 0.

Therefore, there exists n1 ∈ N such that

d(zn, S(zn)) ≤ 1

n
1
p

, for all n ≥ n1. (2.16)

For all n,m ∈ N with m > n ≥ n1. We have

d(zn, zm) ≤d(zn, zn+1) + d(zn+1, zn+2) + · · ·+ d(zm−1, zm)

=d(zn, S(zn)) + d(zn+1, S(zn+1)) + · · ·+ d(zm−1, S(zm−1))

=

m−1∑
i=n

1

i
1
p

≤
∞∑
i=n

1

i
1
p

→ 0.

This yields that {zn} is a strictly increasing Cauchy sequence in Y which has t-property. Hence,
there exists e ∈ Y such that zn ≺ e. If S(e) = e, then, the proof is complete. Assume on contrary
that

θ(d(e, S(e))) ≤ϕ[θ(d(zn, S(zn)))]

≤ϕ2[θ(d(zn−1, S(zn−1)))]

...

≤ϕn+1[θ(d(z0, S(z0)))].

On taking limit as n→∞ we obtain d(e, S(e)) = 0. Therefore we get e = S(e). Moreover let f be
any strict upper bound of e ∈ Y , then e ≺ f. Using (2.9), we obtain

θ(d(f, S(f))) ≤ϕ[θ(d(e, S(e)))]

<θ(d(e, S(e))).

Thus we obtain f = S(f), that is, f is also a fixed point of S and so the proof is complete. q.e.d.

3 Examples

Example 3.1. Let Y = {cr : cr+1 = 5cr + 1, for r ≥ 0 and c0 = −1} ∪ (0, 1] ∩ Q and
d(z, w) = |z − w|. So, Y = {· · · ,−94,−19,−4,−1} ∪ (0, 1] ∩ Q. Define an order relation � on
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Y , where ≤ is usual order. Obviously, (Y,�, d) is not complete but has the t-property. Define a
mapping S : Y → Y by

S(z) =

5z + 1, z ≤ −1

z, otherwise.

Then, S is non-decreasing. We claim that S are θt-contractive and (ϕ, θt)-contractive mappings
with θ(p) = epe

p

, δ = e−4(w−z) and

ϕ(k) =

1, k ∈ [1, 2]

k − 1, k ∈ [2,∞).

To see this, let z, w ∈ Y with z < w. If w ≥ −1 then S(w) = w, that is, d(w, S(w)) = 0
and so the proof is completed. Suppose that z < w ≤ −1. So, d(w, S(w)) = −(4w + 1) and
d(z, S(z)) = −(4z + 1) Thus, Theorem 2.2 and Theorem 2.4 are satisfied. Moreover, we obtain
d(S(z), S(w)) > d(z, w). Then, using (Θ1) we obtain θ(d(S(z), S(w))) > [θ(d(z, w))]δ also, by
(ϕ1), θ(d(S(z), S(w))) > ϕ[θ(d(z, w))]. Therefore, S are not θ-contractive and (ϕ, θ)-contractive
mappings.

Example 3.2. Let Y = {0,±1,±2, · · · } and d(z, w) = |z − w|. Define an order relation � on
Y , where ≤ is usual order. Obviously, (Y,�, d) is not complete but has the t-property. Define a
mapping S : Y → Y by

S(z) =

4z, z < 0

z, z ≥ 0

Then, S is non-decreasing. Let’s take the ϕ(k) function as in example 3.1. We claim that S are

θt-contractive and (ϕ, θt)-contractive mappings with θ(p) = epe
p

, δ = e−
1
2 . To see this, let z, w ∈ Y

with z < w. If w − z ≥ 1 then S(w) = w, that is, d(w, S(w)) = 0 and so the proof is completed.
Suppose that z < w < 0. So, d(w, S(w)) = −3w and d(z, S(z)) = −3z Similarly, Theorem 2.2 and
Theorem 2.4 are satisfied. Moreover, since a similar process is done as in example 3.1, S are not
θ-contractive and (ϕ, θ)-contractive mappings.

These examples show the new class θt-contractive mapping is not included in θ-contractive
mapping.

4 Conclusion

Jleli and Samet [2] introduced a new type of contractions called θ-contraction. Rashid, et al. [10],
the completeness of the metric space is removed in the given results. To overcome this lack, they
introduced that space has the t-property. In this study, we denote a new approach to θ-contraction
mappings by combining the ideas of Rashid, et al., Zheng et al.[3], Jleli and Samet. We establish
the concept of θt-contractive and (ϕ, θt)-contractive mappings in ordered metric spaces without
requiring that the metric space is complete, but using the concept of the t-property. We give some
examples to illustrate the new theorems are applicable.
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