Some fixed point theorems in ordered metric spaces having t-property

Seher Sultan Yeşilkaya
Department of Mathematics, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, 46040, Turkey
E-mail: sultanseher20@gmail.com

Abstract

In this study, we introduce the new concept of θ_{t}-contractive and $\left(\varphi, \theta_{t}\right)$-contractive mappings in ordered metric spaces having t-property. We obtain these theorems without requiring that the metric spaces are complete. Finally, we present some examples to illustrate the new theorems are applicable.

2000 Mathematics Subject Classification. 47H10. 54H25.
Keywords. fixed point theorem, θ_{t}-contractive mapping, t-property.

1 Introduction

Existence of fixed points for contraction mappings in complete metric spaces was introduced by Banach [1], also known as the Banach contraction principle, which claims that if (Y, d) is complete metric spaces and $S: Y \rightarrow Y$ is a contractive mapping $d(S z, S w) \leq L d(z, w)$ for all $z, w \in Y$ and $L \in[0,1)$. Several authors introduced various extensions and generalizations of the Banach contraction principle. For example in 2014 Jleli and Samet [2] introduced the following θ-contractive. Defined by Θ is set of functions $\theta:(0, \infty) \rightarrow(1, \infty)$ satisfying the following conditions:
$\left(\Theta_{1}\right) \theta$ is non-decreasing;
$\left(\Theta_{2}\right)$ for each sequence $\left\{k_{n}\right\} \subset(0, \infty), \lim _{n \rightarrow \infty} \theta\left(k_{n}\right)=1$ if and only if $\lim _{n \rightarrow \infty} k_{n}=0^{+}$;
$\left(\Theta_{3}\right)$ there exist $c \in(0,1)$ and $d \in(0, \infty]$ such that $\lim _{k \rightarrow 0^{+}} \frac{\theta(k)-1}{k^{c}}=d$.
According to [3], define by φ the set of functions $\varphi:[1, \infty) \rightarrow[1, \infty)$ satisfying the following conditions:
$\left(\varphi_{1}\right) \varphi:[1, \infty) \rightarrow[1, \infty)$ is non-decreasing;
$\left(\varphi_{2}\right)$ for each $k>1, \lim _{n \rightarrow \infty} \varphi^{n}(k)=1 ;$
$\left(\varphi_{3}\right) \varphi$ is continuous $[1, \infty)$.
Lemma 1.1. [3] If $\varphi \in \varphi$, then $\varphi(1)=1$, and for each $k>1, \varphi(k)<k$.
Ran and Reurings [4] introduced a fixed point result on a partially ordered metric space. Thereafter, some results, various extensions and generalizations on partially ordered can be found in $[5,6,7$, 8, 9].

Rashid, et al. [10], the completeness of the metric space is removed in the given results. To overcome this lack, they introduced that space has the t-property.

Definition 1.2. [10] Let (Y, \preceq) be an ordered set and $z, w \in Y . z$ is said to be strict upper bound of w, if $w \preceq z$ and $z \neq w$. We donete it by $w \prec z$.

Definition 1.3. [10] Let (Y, \preceq, d) be an ordered metric space. Y has the t-property if every strictly increasing Cauchy sequence $\left\{z_{n}\right\}$ in Y has a strict upper bound in Y, i.e., there exists $e \in Y$ such that $z_{n} \prec e$.

In this article, following by Rashid, et al. [10], Zheng et al.[3], Jleli and Samet [2], we introduce some fixed point theorems for new contractive mappings in partially ordered metric spaces having t property. We obtain these theorems without requiring that the metric spaces are complete.

2 Main results

In this section, we present our main results. First, we give the following θ_{t}-contractive mapping.
Definition 2.1. Let (Y, \preceq, d) be an ordered metric space and $S: Y \rightarrow Y$ be a mapping and $\theta \in \Theta$. Then we say that S is θ_{t}-contractive mapping if there exists $\delta \in(0,1)$ such that for all $z, w \in Y$ with $z \neq S z, w \neq S w$ and $z \prec w$, we have

$$
\begin{equation*}
\theta(d(w, S(w))) \leq[\theta(d(z, S(z)))]^{\delta} \tag{2.1}
\end{equation*}
$$

Theorem 2.2. Let (Y, \preceq, d) be an ordered metric space having t property and $S: Y \rightarrow Y$ be a θ_{t}-contractive mapping. Assume that S is non-decreasing and there exists $z_{0} \in Y$ such that $z_{0} \preceq S\left(z_{0}\right)$. Then S has at least one fixed point.

Proof. We have $z_{0} \in Y$ such that $z_{0} \preceq S\left(z_{0}\right)$. If $z_{0}=S\left(z_{0}\right)$ then the proof is completed. Now, choose $z_{1}=S\left(z_{0}\right)$ such that $z_{0} \prec z_{1}$. Since S is monotonicity, we have $S\left(z_{0}\right) \preceq S\left(z_{1}\right)$, that is, $z_{1} \preceq S\left(z_{1}\right)$. If $z_{1}=S\left(z_{1}\right)$ then the proof is complete. Similarly, choose $z_{2}=S\left(z_{1}\right)$ such that $z_{1} \prec z_{2}$. Since S is monotonicity, we have $S\left(z_{1}\right) \preceq S\left(z_{2}\right)$, that is, $z_{1} \preceq S\left(z_{1}\right)$. Continuous this condition, we have a strictly increasing sequence $\left\{z_{n}\right\}$ in Y such that $z_{n+1}=S\left(z_{n}\right)$. From $z_{0} \prec z_{1}$ and using (2.1), we obtain

$$
\begin{equation*}
\theta\left(d\left(z_{1}, S\left(z_{1}\right)\right)\right) \leq\left[\theta\left(d\left(z_{0}, S\left(z_{0}\right)\right)\right)\right]^{\delta} \tag{2.2}
\end{equation*}
$$

Similarly, from $z_{1} \prec z_{2}$ and using (2.1), we obtain

$$
\begin{equation*}
\theta\left(d\left(z_{2}, S\left(z_{2}\right)\right)\right) \leq\left[\theta\left(d\left(z_{1}, S\left(z_{1}\right)\right)\right)\right]^{\delta} \leq\left[\theta\left(d\left(z_{0}, S\left(z_{0}\right)\right)\right)\right]^{\delta^{2}} \tag{2.3}
\end{equation*}
$$

From the above inequalities, we have

$$
\begin{align*}
\theta\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right) \leq & \leq \theta\left(d\left(z_{n-1}, S\left(z_{n-1}\right)\right)\right]^{\delta} \\
& \leq\left[\theta\left(d\left(z_{n-2}, S\left(z_{n-2}\right)\right)\right]^{\delta^{2}}\right. \\
& \vdots \tag{2.4}\\
& \leq\left[\theta\left(d\left(z_{0}, S\left(z_{0}\right)\right)\right]^{\delta^{n}} .\right.
\end{align*}
$$

On taking limit as $n \rightarrow \infty$, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \theta\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right)=1 \tag{2.5}
\end{equation*}
$$

which implies from $\left(\Theta_{2}\right)$ that

$$
\lim _{n \rightarrow \infty} d\left(z_{n}, S\left(z_{n}\right)=0^{+}\right.
$$

From condition $\left(\Theta_{3}\right)$, there exists $p \in(0,1)$ and $Q \in(0, \infty]$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\theta\left(d\left(z_{n}, S\left(z_{n}\right)\right)-1\right.}{\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right)^{p}}=Q \tag{2.6}
\end{equation*}
$$

Suppose that $Q<\infty$. Then, let $R=\frac{Q}{2}>0$. We get, there exists $n_{0} \in \mathbb{N}$ such that

$$
\left|\frac{\theta\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right)-1}{\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right)^{p}}-Q\right| \leq R, \text { for all } n \geq n_{0}
$$

Which implies that

$$
\frac{\theta\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right)-1}{\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right)^{p}} \geq Q-R=R, \text { for all } n \geq n_{0}
$$

Subsequently, for all $n \geq n_{0}$, we obtain

$$
n\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right)^{p} \leq \operatorname{Tn}\left[\theta\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right)-1\right]
$$

where $T=\frac{1}{R}$. Suppose that $Q=\infty$. Let $R>0$ be an arbitrary positive number. We get, there exists $n_{0} \in \mathbb{N}$ such that

$$
\frac{\theta\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right)-1}{\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right)^{p}} \geq R
$$

for all $n \geq n_{0}$. Which implies that for all $n \geq n_{0}$,

$$
n\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right)^{p} \leq \operatorname{Tn}\left[\theta\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right)-1\right]
$$

where $H=\frac{1}{R}$. Thus, in two cases, there exists $T>0$ and $n_{0} \in \mathbb{N}$ such that, for all $n \geq n_{0}$,

$$
n\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right)^{p} \leq \operatorname{Tn}\left[\theta\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right)-1\right] .
$$

Using (2.4), we have

$$
\begin{equation*}
n\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right)^{p} \leq \operatorname{Tn}\left(\left[\theta\left(d\left(z_{0}, S\left(z_{0}\right)\right)\right)\right]^{\delta^{n}}-1\right) \tag{2.7}
\end{equation*}
$$

for all $n \geq n_{0}$. Letting $n \rightarrow \infty$ in (2.7), we get

$$
\lim _{n \rightarrow \infty} n\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right)^{p}=0
$$

Therefore, there exists $n_{1} \in \mathbb{N}$ such that

$$
\begin{equation*}
d\left(z_{n}, S\left(z_{n}\right)\right) \leq \frac{1}{n^{\frac{1}{p}}}, \text { for all } n \geq n_{1} \tag{2.8}
\end{equation*}
$$

For all $n, m \in \mathbb{N}$ with $m>n \geq n_{1}$. We have

$$
\begin{aligned}
d\left(z_{n}, z_{m}\right) & \leq d\left(z_{n}, z_{n+1}\right)+d\left(z_{n+1}, z_{n+2}\right)+\cdots+d\left(z_{m-1}, z_{m}\right) \\
& =d\left(z_{n}, S\left(z_{n}\right)\right)+d\left(z_{n+1}, S\left(z_{n+1}\right)\right)+\cdots+d\left(z_{m-1}, S\left(z_{m-1}\right)\right) \\
& =\sum_{i=n}^{m-1} \frac{1}{i^{\frac{1}{p}}} \leq \sum_{i=n}^{\infty} \frac{1}{i^{\frac{1}{p}}} \rightarrow 0
\end{aligned}
$$

This yields that $\left\{z_{n}\right\}$ is a strictly increasing Cauchy sequence in Y which has t-property. Hence, there exists $e \in Y$ such that $z_{n} \prec e$. If $S(e)=e$, then, the proof is complete. Suppose on contrary that

$$
\begin{aligned}
\theta(d(e, S(e))) & \leq\left[\theta\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right)\right]^{\delta} \\
& \leq\left[\theta\left(d\left(z_{n-1}, S\left(z_{n-1}\right)\right)\right)\right]^{\delta^{2}} \\
& \vdots \\
& \leq\left[\theta\left(d\left(z_{0}, S\left(z_{0}\right)\right)\right)\right]^{\delta^{n+1}} .
\end{aligned}
$$

On taking limit as $n \rightarrow \infty$, we obtain $d(e, S(e))=0$. Therefore, we get $e=S(e)$. Moreover let f be any strict upper bound of $e \in Y$, then $e \prec f$. Using (2.1), we obtain

$$
\begin{aligned}
\theta(d(f, S(f))) & \leq[\theta(d(e, S(e)))]^{\delta} \\
& \leq \theta(d(e, S(e)))
\end{aligned}
$$

Thus we obtain $f=S(f)$, that is, f is also a fixed point of S and so the proof is complete.
Q.E.D.

Definition 2.3. Let (Y, \preceq, d) be an ordered metric space and $S: Y \rightarrow Y$ be a mapping and $\theta \in \Theta$. Then we say that S is $\left(\varphi, \theta_{t}\right)$-contractive mapping if there exists $\varphi \in \varphi$ such that for all $z, w \in Y$ with $z \neq S z, w \neq S w$ and $z \prec w$, we have

$$
\begin{equation*}
\theta(d(w, S(w))) \leq \varphi[\theta(d(z, S(z)))] \tag{2.9}
\end{equation*}
$$

Theorem 2.4. Let (Y, \preceq, d) be an ordered metric space having t property and $S: Y \rightarrow Y$ be a $\left(\varphi, \theta_{t}\right)$-contractive mapping. Assume that S is non-decreasing and there exists $z_{0} \in Y$ such that $z_{0} \preceq S\left(z_{0}\right)$. Then S has at least one fixed point.

Proof. We have $z_{0} \in Y$ such that $z_{0} \preceq S\left(z_{0}\right)$. If $z_{0}=S\left(z_{0}\right)$ then, the proof is complete. Now, choose $z_{1}=S\left(z_{0}\right)$ such that $z_{0} \prec z_{1}$. Since S is monotonicity, we have $S\left(z_{0}\right) \preceq S\left(z_{1}\right)$, that is $z_{1} \preceq S\left(z_{1}\right)$. If $z_{1}=S\left(z_{1}\right)$ then, the proof is complete. Similarly, choose $z_{2}=S\left(z_{1}\right)$ such that $z_{1} \prec z_{2}$. Since S is monotonicity, we have $S\left(z_{1}\right) \preceq S\left(z_{2}\right)$, that is, $z_{1} \preceq S\left(z_{1}\right)$. Continuous this condition, we have a strictly increasing sequence $\left\{z_{n}\right\}$ in Y such that $z_{n+1}=S\left(z_{n}\right)$. From $z_{0} \prec z_{1}$ and using (2.9), we obtain

$$
\begin{equation*}
\theta\left(d\left(z_{1}, S\left(z_{1}\right)\right)\right) \leq \varphi\left[\theta\left(d\left(z_{0}, S\left(z_{0}\right)\right)\right)\right] \tag{2.10}
\end{equation*}
$$

Similarly, from $z_{1} \prec z_{2}$ and using (2.9), we obtain

$$
\begin{equation*}
\theta\left(d\left(z_{2}, S\left(z_{2}\right)\right)\right) \leq \varphi\left[\theta\left(d\left(z_{1}, S\left(z_{1}\right)\right)\right)\right] \tag{2.11}
\end{equation*}
$$

From the above inequalities, we have

$$
\begin{align*}
\theta\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right) & \leq \varphi\left[\theta\left(d\left(z_{n-1}, S\left(z_{n-1}\right)\right)\right)\right] \\
& \leq \varphi^{2}\left[\theta\left(d\left(z_{n-2}, S\left(z_{n-2}\right)\right)\right)\right] \\
& \vdots \tag{2.12}\\
& \leq \varphi^{n}\left[\theta\left(d\left(z_{0}, S\left(z_{0}\right)\right)\right)\right] .
\end{align*}
$$

On taking limit as $n \rightarrow \infty$, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \theta\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right)=1 \tag{2.13}
\end{equation*}
$$

which implies from $\left(\Theta_{2}\right)$ that

$$
\lim _{n \rightarrow \infty} d\left(z_{n}, S\left(z_{n}\right)=0^{+}\right.
$$

From condition $\left(\Theta_{3}\right)$, there exists $p \in(0,1)$ and $Q \in(0, \infty]$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\theta\left(d\left(z_{n}, S\left(z_{n}\right)\right)-1\right.}{\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right)^{p}}=Q \tag{2.14}
\end{equation*}
$$

Suppose that $Q<\infty$. Then, let $R=\frac{Q}{2}>0$. We get, there exists $n_{0} \in \mathbb{N}$ such that

$$
\left|\frac{\theta\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right)-1}{\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right)^{p}}-Q\right| \leq R, \text { for all } n \geq n_{0}
$$

Which implies that

$$
\frac{\theta\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right)-1}{\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right)^{p}} \geq Q-R=R, \text { for all } n \geq n_{0}
$$

Subsequently, for all $n \geq n_{0}$, we obtain

$$
n\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right)^{p} \leq \operatorname{Tn}\left[\theta\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right)-1\right]
$$

where $T=\frac{1}{R}$. Suppose that $Q=\infty$. Let $R>0$ be an arbitrary positive number. We get, there exists $n_{0} \in \mathbb{N}$ such that

$$
\frac{\theta\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right)-1}{\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right)^{p}} \geq R
$$

for all $n \geq n_{0}$. Which implies that for all $n \geq n_{0}$,

$$
n\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right)^{p} \leq \operatorname{Tn}\left[\theta\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right)-1\right]
$$

where $T=\frac{1}{R}$. Thus, in two cases, there exists $T>0$ and $n_{0} \in \mathbb{N}$ such that, for all $n \geq n_{0}$,

$$
n\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right)^{p} \leq \operatorname{Tn}\left[\theta\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right)-1\right] .
$$

Using (2.12), we have

$$
\begin{equation*}
n\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right)^{p} \leq \operatorname{Tn}\left(\varphi^{n}\left[\theta\left(d\left(z_{0}, S\left(z_{0}\right)\right)\right)\right]-1\right) \tag{2.15}
\end{equation*}
$$

for all $n \geq n_{0}$. Letting $n \rightarrow \infty$ in (2.15), we get

$$
\lim _{n \rightarrow \infty} n\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right)^{p}=0
$$

Therefore, there exists $n_{1} \in \mathbb{N}$ such that

$$
\begin{equation*}
d\left(z_{n}, S\left(z_{n}\right)\right) \leq \frac{1}{n^{\frac{1}{p}}}, \text { for all } n \geq n_{1} \tag{2.16}
\end{equation*}
$$

For all $n, m \in \mathbb{N}$ with $m>n \geq n_{1}$. We have

$$
\begin{aligned}
d\left(z_{n}, z_{m}\right) & \leq d\left(z_{n}, z_{n+1}\right)+d\left(z_{n+1}, z_{n+2}\right)+\cdots+d\left(z_{m-1}, z_{m}\right) \\
& =d\left(z_{n}, S\left(z_{n}\right)\right)+d\left(z_{n+1}, S\left(z_{n+1}\right)\right)+\cdots+d\left(z_{m-1}, S\left(z_{m-1}\right)\right) \\
& =\sum_{i=n}^{m-1} \frac{1}{i^{\frac{1}{p}}} \leq \sum_{i=n}^{\infty} \frac{1}{i^{\frac{1}{p}}} \rightarrow 0
\end{aligned}
$$

This yields that $\left\{z_{n}\right\}$ is a strictly increasing Cauchy sequence in Y which has t-property. Hence, there exists $e \in Y$ such that $z_{n} \prec e$. If $S(e)=e$, then, the proof is complete. Assume on contrary that

$$
\begin{aligned}
\theta(d(e, S(e))) & \leq \varphi\left[\theta\left(d\left(z_{n}, S\left(z_{n}\right)\right)\right)\right] \\
& \leq \varphi^{2}\left[\theta\left(d\left(z_{n-1}, S\left(z_{n-1}\right)\right)\right)\right] \\
& \vdots \\
& \leq \varphi^{n+1}\left[\theta\left(d\left(z_{0}, S\left(z_{0}\right)\right)\right)\right]
\end{aligned}
$$

On taking limit as $n \rightarrow \infty$ we obtain $d(e, S(e))=0$. Therefore we get $e=S(e)$. Moreover let f be any strict upper bound of $e \in Y$, then $e \prec f$. Using (2.9), we obtain

$$
\begin{aligned}
\theta(d(f, S(f))) & \leq \varphi[\theta(d(e, S(e)))] \\
& <\theta(d(e, S(e))) .
\end{aligned}
$$

Thus we obtain $f=S(f)$, that is, f is also a fixed point of S and so the proof is complete. Q.e.d.

3 Examples

Example 3.1. Let $Y=\left\{c_{r}: c_{r+1}=5 c_{r}+1\right.$, for $r \geq 0$ and $\left.c_{0}=-1\right\} \cup(0,1] \cap \mathbb{Q}$ and $d(z, w)=|z-w|$. So, $Y=\{\cdots,-94,-19,-4,-1\} \cup(0,1] \cap \mathbb{Q}$. Define an order relation \preceq on
Y, where \leq is usual order. Obviously, (Y, \preceq, d) is not complete but has the t-property. Define a mapping $S: Y \rightarrow Y$ by

$$
S(z)=\left\{\begin{array}{l}
5 z+1, \quad z \leq-1 \\
z, \quad \text { otherwise }
\end{array}\right.
$$

Then, S is non-decreasing. We claim that S are θ_{t}-contractive and $\left(\varphi, \theta_{t}\right)$-contractive mappings with $\theta(p)=e^{p e^{p}}, \delta=e^{-4(w-z)}$ and

$$
\varphi(k)=\left\{\begin{array}{l}
1, \quad k \in[1,2] \\
k-1, \quad k \in[2, \infty)
\end{array}\right.
$$

To see this, let $z, w \in Y$ with $z<w$. If $w \geq-1$ then $S(w)=w$, that is, $d(w, S(w))=0$ and so the proof is completed. Suppose that $z<w \leq-1$. So, $d(w, S(w))=-(4 w+1)$ and $d(z, S(z))=-(4 z+1)$ Thus, Theorem 2.2 and Theorem 2.4 are satisfied. Moreover, we obtain $d(S(z), S(w))>d(z, w)$. Then, using $\left(\Theta_{1}\right)$ we obtain $\theta(d(S(z), S(w)))>[\theta(d(z, w))]^{\delta}$ also, by $\left(\varphi_{1}\right), \theta(d(S(z), S(w)))>\varphi[\theta(d(z, w))]$. Therefore, S are not θ-contractive and (φ, θ)-contractive mappings.

Example 3.2. Let $Y=\{0, \pm 1, \pm 2, \cdots\}$ and $d(z, w)=|z-w|$. Define an order relation \preceq on Y, where \leq is usual order. Obviously, (Y, \preceq, d) is not complete but has the t-property. Define a mapping $S: Y \rightarrow Y$ by

$$
S(z)= \begin{cases}4 z, & z<0 \\ z, & z \geq 0\end{cases}
$$

Then, S is non-decreasing. Let's take the $\varphi(k)$ function as in example 3.1. We claim that S are θ_{t}-contractive and $\left(\varphi, \theta_{t}\right)$-contractive mappings with $\theta(p)=e^{p e^{p}}, \delta=e^{-\frac{1}{2}}$. To see this, let $z, w \in Y$ with $z<w$. If $w-z \geq 1$ then $S(w)=w$, that is, $d(w, S(w))=0$ and so the proof is completed. Suppose that $z<w<0$. So, $d(w, S(w))=-3 w$ and $d(z, S(z))=-3 z$ Similarly, Theorem 2.2 and Theorem 2.4 are satisfied. Moreover, since a similar process is done as in example $3.1, S$ are not θ-contractive and (φ, θ)-contractive mappings.

These examples show the new class θ_{t}-contractive mapping is not included in θ-contractive mapping.

4 Conclusion

Jleli and Samet [2] introduced a new type of contractions called θ-contraction. Rashid, et al. [10], the completeness of the metric space is removed in the given results. To overcome this lack, they introduced that space has the t-property. In this study, we denote a new approach to θ-contraction mappings by combining the ideas of Rashid, et al., Zheng et al.[3], Jleli and Samet. We establish the concept of θ_{t}-contractive and $\left(\varphi, \theta_{t}\right)$-contractive mappings in ordered metric spaces without requiring that the metric space is complete, but using the concept of the t-property. We give some examples to illustrate the new theorems are applicable.

Acknowledgments

The authors wish to thank the referees for their careful reading of the manuscript and valuable suggestions.

References

[1] S. Banach, Sur les operations dans les ensembles abstracits et leur application aux equations integrales. Fund. Math., 3 (1922)133-181.
[2] M. Jleli and B. Samet A new generalization of the Banach contraction principle, J. Inequal. Appl., 38 (2014).
[3] D. Zheng, Z. Cai and P. Wang New fixed point theorems for $\theta-\varphi$ contraction in complete metric spaces. Journal of Nonlinear Sciences Applications 10(5)(2017).
[4] A.C.M Ran and M.C.B. Reurings A fixed point theorem in partially ordered sets and some application to matrix equations, Proc Amer Math Soc., 132 (2004) 1435-1443.
[5] M. Abbas, T. Nazir and S. Radenovic Common fixed points of four maps in partially ordered metric spaces. Appl Math Lett, 249 (2011) 1520-1526.
[6] R.P. Agarwal, M.A. El-Gebeily and D. O'Regan Generalized contractions in partially ordered metric spaces. Appl Anal, 871 (2008) 109-116.
[7] P. Kumam, F. Rouzkard, M. Imdad and D. Gopal Fixed point theorems on ordered metric spaces through a rational contraction. Abstr Appl Anal, 2013, (2013) Article ID 206515.
[8] G. Durmaz, G. Mınak and I. Altun Fixed points of ordered F-contractions. Hacettepe Journal of Mathematics and Statistics, 45 (2016) 15-21.
[9] G. Mınak and I. Altun Ordered θ-contractions and some fixed point results. Journal of Nonlinear Functional Analysis 41 (2017).
[10] T. Rashid, Q.H. Khan, H. Aydi, H. Alsamir and M.S. Noorani, t-property of metric spaces and fixed point theorems. Ital. J. Pure Appl. Math. 41 (2019) 422-433.

